Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasite ; 31: 13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450719

RESUMO

Tsetse flies (genus Glossina) transmit deadly trypanosomes to human populations and domestic animals in sub-Saharan Africa. Some foci of Human African Trypanosomiasis due to Trypanosoma brucei gambiense (g-HAT) persist in southern Chad, where a program of tsetse control was implemented against the local vector Glossina fuscipes fuscipes in 2018 in Maro. We analyzed the population genetics of G. f. fuscipes from the Maro focus before control (T0), one year (T1), and 18 months (T2) after the beginning of control efforts. Most flies captured displayed a local genetic profile (local survivors), but a few flies displayed outlier genotypes. Moreover, disturbance of isolation by distance signature (increase of genetic distance with geographic distance) and effective population size estimates, absence of any genetic signature of a bottleneck, and an increase of genetic diversity between T0 and T2 strongly suggest gene flows from various origins, and a limited impact of the vector control efforts on this tsetse population. Continuous control and surveillance of g-HAT transmission is thus recommended in Maro. Particular attention will need to be paid to the border with the Central African Republic, a country where the entomological and epidemiological status of g-HAT is unknown.


Title: Impact limité de la lutte antivectorielle sur la structure des populations de Glossina fuscipes fuscipes dans le foyer de la maladie du sommeil de Maro, Tchad. Abstract: Les mouches tsé-tsé (genre Glossina) transmettent des trypanosomes mortels aux populations humaines ainsi qu'aux animaux domestiques en Afrique sub-saharienne. Certains foyers de la trypanosomiase humaine Africaine due à Trypanosoma brucei gambiense (THA-g) persistent au sud du Tchad, où un programme de lutte antivectorielle a été mis en place contre le vecteur local de la maladie, Glossina fuscipes fuscipes, en particulier à Maro en 2018. Nous avons analysé la structure génétique des populations de G. f. fuscipes de ce foyer à T0 (avant lutte), une année après le début de la lutte (T1), et 18 mois après (T2). La plupart des mouches capturées après le début de la lutte ont montré un profil génétique local (survivants locaux), mais quelques-unes d'entre elles présentaient des génotypes d'individus atypiques. Par ailleurs, la présence de perturbations des signatures d'isolement par la distance (augmentation de la distance génétique avec la distance géographique), l'absence de signature génétique d'un goulot d'étranglement, et un accroissement de la diversité génétique entre T0 et T2 sont des arguments forts en faveur de la recolonisation de la zone par des mouches d'origines variées, tout en témoignant des effets limités de la campagne de lutte dans ce foyer. Ces résultats conduisent à recommander une lutte et une surveillance continues dans le foyer de Maro. Une attention particulière devra par ailleurs être prêtée à l'autre côté de la rive, située côté République Centre Africaine, dont le statut épidémiologique reste inconnu concernant les tsé-tsé et la THA-g.


Assuntos
Aranhas , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Humanos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Moscas Tsé-Tsé/genética , Chade/epidemiologia , Trypanosoma brucei gambiense/genética , Animais Domésticos
2.
Parasite ; 31: 15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38520091

RESUMO

Trypanosoma brucei gambiense (Tbg) group 2 is a subgroup of trypanosomes able to infect humans and is found in West and Central Africa. Unlike other agents causing sleeping sickness, such as Tbg group 1 and Trypanosoma brucei rhodesiense, Tbg2 lacks the typical molecular markers associated with resistance to human serum. Only 36 strains of Tbg2 have been documented, and therefore, very limited research has been conducted despite their zoonotic nature. Some of these strains are only available in their procyclic form, which hinders human serum resistance assays and mechanistic studies. Furthermore, the understanding of Tbg2's potential to infect tsetse flies and mammalian hosts is limited. In this study, 165 Glossina palpalis gambiensis flies were experimentally infected with procyclic Tbg2 parasites. It was found that 35 days post-infection, 43 flies out of the 80 still alive were found to be Tbg2 PCR-positive in the saliva. These flies were able to infect 3 out of the 4 mice used for blood-feeding. Dissection revealed that only six flies in fact carried mature infections in their midguts and salivary glands. Importantly, a single fly with a mature infection was sufficient to infect a mammalian host. This Tbg2 transmission success confirms that Tbg2 strains can establish in tsetse flies and infect mammalian hosts. This study describes an effective in vivo protocol for transforming Tbg2 from procyclic to bloodstream form, reproducing the complete Tbg2 cycle from G. p. gambiensis to mice. These findings provide valuable insights into Tbg2's host infectivity, and will facilitate further research on mechanisms of human serum resistance.


Title: Cycle de vie expérimental in vivo de Trypanosoma brucei gambiense groupe 2 : de la forme procyclique à la forme sanguicole. Abstract: Trypanosoma brucei gambiense (Tbg) groupe 2 est un sous-groupe de trypanosomes capables d'infecter l'Homme, présent en Afrique de l'Ouest et en Afrique centrale. Contrairement aux autres agents responsables de la maladie du sommeil, tels que Tbg groupe 1 et Trypanosoma brucei rhodesiense, Tbg2 ne présente pas les marqueurs moléculaires habituellement associés à la résistance au sérum humain. Seules trente-six souches de Tbg2 ont été répertoriées, limitant considérablement les recherches sur ce sous-groupe malgré sa nature zoonotique. Certaines de ces souches ne sont disponibles que sous leur forme procyclique, ce qui freine la réalisation des tests de résistance au sérum humain et les études mécanistiques. De plus, la compréhension du potentiel de Tbg2 à infecter les glossines et les hôtes mammifères est limitée. Dans cette étude, 165 glossines Glossina palpalis gambiensis ont été infectées expérimentalement par des parasites Tbg2 sous leur forme procyclique. Trente-cinq jours après l'infection, 43 des 80 glossines encore en vie se sont révélées positives à Tbg2 en PCR sur leur salive. Ces glossines ont réussi à infecter trois des quatre souris utilisées pour leur repas de sang. La dissection des glossines a révélé que seules six d'entre elles étaient réellement porteuses d'infections matures dans leur intestin et leurs glandes salivaires. Il est important de noter qu'une seule glossine porteuse d'une infection mature a suffi pour infecter un hôte mammifère. Ce succès de transmission de Tbg2 confirme que les souches de Tbg2 peuvent s'établir dans les glossines et infecter des hôtes mammifères. Cette étude décrit un protocole in vivo pour transformer la forme procyclique de Tbg2 en forme sanguicole, en reproduisant le cycle complet de Tbg2 de G. p. gambiensis à la souris. Ces résultats fournissent des informations précieuses sur le potentiel infectieux de Tbg2 et faciliteront la recherche sur les mécanismes de résistance au sérum humain des souches.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Humanos , Camundongos , Trypanosoma brucei gambiense , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/parasitologia , Estágios do Ciclo de Vida , Mamíferos
3.
Parasite ; 30: 36, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37728508

RESUMO

African trypanosomoses, whose pathogens are transmitted by tsetse flies, are a threat to animal and human health. Tsetse flies observed at the military base of the French Forces in Côte d'Ivoire (FFCI base) were probably involved in the infection and death of military working dogs. Entomological and parasitological surveys were carried out during the rainy and dry seasons using "Vavoua" traps to identify tsetse fly species, their distribution, favorable biotopes and food sources, as well as the trypanosomes they harbor. A total of 1185 Glossina palpalis palpalis tsetse flies were caught, corresponding to a high average apparent density of 2.26 tsetse/trap/day. The results showed a heterogeneous distribution of tsetse at the FFCI base, linked to more or less favorable biotopes. No significant variation in tsetse densities was observed according to the season. The overall trypanosomes infection rate according to microscopic observation was 13.5%. Polymerase chain reaction (PCR) analyses confirmed the presence of Trypanosoma vivax and T. congolense forest type, responsible for African animal trypanosomosis. Our findings suggest that there is a risk of introduction and transmission of T. brucei gambiense, responsible for human African trypanosomiasis, on the study site. This risk of transmission of African trypanosomes concerns not only the FFCI base, but also inhabited peripheral areas. Our study confirmed the need for vector control adapted to the eco-epidemiological context of the FFCI base.


Title: Écologie des mouches tsé-tsé et risque de transmission des trypanosomes africains lié à une zone forestière protégée dans une base militaire de la ville d'Abidjan, Côte d'Ivoire. Abstract: Les trypanosomoses africaines, dont les agents pathogènes sont transmis par les mouches tsé-tsé, constituent une contrainte pour la santé animale et humaine. Des mouches tsé-tsé observées dans la base militaire des Forces françaises en Côte d'Ivoire (base FFCI) ont probablement été impliquées dans l'infection et la mort de chiens militaires. Des enquêtes entomologiques et parasitologiques ont été menées pendant la saison pluvieuse et la saison sèche à l'aide de pièges "Vavoua" afin d'identifier les espèces de mouches tsé-tsé, leur distribution, les biotopes favorables et leur source de nourriture ainsi que les trypanosomes qu'elles hébergent. Au total 1185 mouches tsé-tsé de l'espèce Glossina palpalis palpalis ont été capturées, ce qui correspond à une densité apparente moyenne élevée de 2,26 tsé-tsé/piège/jour. Les résultats ont montré une distribution hétérogène des tsé-tsé dans la base FFCI en lien avec des biotopes plus ou moins favorables. Aucune variation significative des densités de tsé-tsé n'a été observée en fonction de la saison. Le taux d'infection global par les trypanosomes était de 13,5 % selon l'observation microscopique. Les analyses PCR ont confirmé la présence de Trypanosoma vivax et T. congolense type forêt, responsable de la trypanosomose animale africaine. Nos résultats suggèrent qu'il existe un risque potentiel d'introduction et de transmission de T. brucei gambiense responsable de la trypanosomiase humaine africaine dans la zone d'étude. Ce risque de transmission des trypanosomes africains concerne non seulement l'intérieur de la base FFCI, mais aussi les espaces périphériques habités. Notre étude a confirmé la nécessité de mener une lutte antivectorielle adaptée au contexte éco-épidémiologique de la base FFCI.


Assuntos
Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Cães , Humanos , Côte d'Ivoire/epidemiologia , Instalações Militares , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/veterinária , Florestas
4.
Parasit Vectors ; 16(1): 111, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949538

RESUMO

BACKGROUND: Human African trypanosomiasis (HAT) is a neglected tropical disease caused by Trypanosoma brucei gambiense transmitted by tsetse flies in sub-Saharan West Africa. In southern Chad the most active and persistent focus is the Mandoul focus, with 98% of the reported human cases, and where African animal trypanosomosis (AAT) is also present. Recently, a control project to eliminate tsetse flies (Glossina fuscipes fuscipes) in this focus using the sterile insect technique (SIT) was initiated. However, the release of large numbers of sterile males of G. f. fuscipes might result in a potential temporary increase in transmission of trypanosomes since male tsetse flies are also able to transmit the parasite. The objective of this work was therefore to experimentally assess the vector competence of sterile males treated with isometamidium for Trypanosoma brucei brucei. METHODS: An experimental infection was set up in the laboratory, mimicking field conditions: the same tsetse species that is present in Mandoul was used. A T. b. brucei strain close to T. b. gambiense was used, and the ability of the sterile male tsetse flies fed on blood with and without a trypanocide to acquire and transmit trypanosomes was measured. RESULTS: Only 2% of the experimentally infected flies developed an immature infection (midgut) while none of the flies developed a metacyclic infection of T. b. brucei in the salivary glands. We did not observe any effect of the trypanocide used (isometamidium chloride at 100 mg/l) on the development of infection in the flies. CONCLUSIONS: Our results indicate that sterile males of the tested strain of G. f. fuscipes were unable to cyclically transmit T. b. brucei and might even be refractory to the infection. The data of the research indicate that the risk of cyclical transmission of T. brucei by sterile male G. f. fuscipes of the strain colonized at IAEA for almost 40 years appears to be small.


Assuntos
Infertilidade Masculina , Tripanossomicidas , Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Masculino , Humanos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/prevenção & controle , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/parasitologia , Chade/epidemiologia , Insetos
5.
PLoS Negl Trop Dis ; 15(12): e0010036, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34937054

RESUMO

BACKGROUND: The existence of an animal reservoir of Trypanosoma brucei gambiense (T. b. gambiense), the agent of human African trypanosomiasis (HAT), may compromise the interruption of transmission targeted by World Health Organization. The aim of this study was to investigate the presence of trypanosomes in pigs and people in the Vavoua HAT historical focus where cases were still diagnosed in the early 2010's. METHODS: For the human survey, we used the CATT, mini-anion exchange centrifugation technique and immune trypanolysis tests. For the animal survey, the buffy coat technique was also used as well as the PCR using Trypanosoma species specific, including the T. b. gambiense TgsGP detection using single round and nested PCRs, performed from animal blood samples and from strains isolated from subjects positive for parasitological investigations. RESULTS: No HAT cases were detected among 345 people tested. A total of 167 pigs were investigated. Free-ranging pigs appeared significantly more infected than pigs in pen. Over 70% of free-ranging pigs were positive for CATT and parasitological investigations and 27-43% were positive to trypanolysis depending on the antigen used. T. brucei was the most prevalent species (57%) followed by T. congolense (24%). Blood sample extracted DNA of T. brucei positive subjects were negative to single round TgsGP PCR. However, 1/22 and 6/22 isolated strains were positive with single round and nested TgsGP PCRs, respectively. DISCUSSION: Free-ranging pigs were identified as a multi-reservoir of T. brucei and/or T. congolense with mixed infections of different strains. This trypanosome diversity hinders the easy and direct detection of T. b. gambiense. We highlight the lack of tools to prove or exclude with certainty the presence of T. b. gambiense. This study once more highlights the need of technical improvements to explore the role of animals in the epidemiology of HAT.


Assuntos
Reservatórios de Doenças/parasitologia , Doenças dos Suínos/parasitologia , Trypanosoma brucei gambiense/isolamento & purificação , Trypanosoma congolense/isolamento & purificação , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/veterinária , Animais , Animais Domésticos/parasitologia , Côte d'Ivoire/epidemiologia , Humanos , Reação em Cadeia da Polimerase , Suínos , Doenças dos Suínos/epidemiologia , Trypanosoma brucei gambiense/genética , Trypanosoma brucei gambiense/fisiologia , Trypanosoma congolense/genética , Trypanosoma congolense/fisiologia , Tripanossomíase Africana/epidemiologia
6.
Mol Biol Evol ; 36(7): 1551-1564, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31173134

RESUMO

Genetic sex determination (GSD) can evolve from environmental sex determination (ESD) via an intermediate state in which both coexist in the same population. Such mixed populations are found in the crustacean Daphnia magna, where non-male producers (NMP, genetically determined females) coexist with male producers (MP), in which male production is environmentally inducible and can also artificially be triggered by exposure to juvenile hormone. This makes Daphnia magna a rare model species for the study of evolutionary transitions from ESD to GSD. Although the chromosomal location of the NMP-determining mutation has been mapped, the actual genes and pathways involved in the evolution of GSD from ESD remain unknown. Here, we present a transcriptomic analysis of MP and NMP females under control (female producing) and under hormone exposure conditions. We found ∼100 differentially expressed genes between MP and NMP under control conditions. Genes in the NMP-determining chromosome region were especially likely to show such constitutive expression differences. Hormone exposure led to expression changes of an additional ∼100 (MP) to ∼600 (NMP) genes, with an almost systematic upregulation of those genes in NMP. These observations suggest that the NMP phenotype is not determined by a simple "loss-of-function" mutation. Rather, homeostasis of female offspring production under hormone exposure appears to be an active state, tightly regulated by complex mechanisms involving many genes. In a broader view, this illustrates that the evolution of GSD, while potentially initiated by a single mutation, likely leads to secondary integration involving many genes and pathways.


Assuntos
Evolução Biológica , Daphnia/genética , Expressão Gênica , Processos de Determinação Sexual , Animais , Feminino , Perfilação da Expressão Gênica , Hormônios , Masculino
7.
Int J Parasitol ; 49(6): 471-480, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30904622

RESUMO

In the study of multi-host parasites, it is often found that host species contribute asymmetrically to parasite transmission. Yet in natural populations, identifying which hosts contribute to parasite transmission and maintenance is a recurring challenge. Here, we approach this issue by taking advantage of natural variation in the composition of a host community. We studied the brine shrimps Artemia franciscana and Artemia parthenogenetica and their microsporidian parasites Anostracospora rigaudi and Enterocytospora artemiae. Previous laboratory experiments had shown that each host can transmit both parasites, but could not predict their actual contributions to the parasites' maintenance in the field. To resolve this, we gathered long-term prevalence data from a metacommunity of these species. Metacommunity patches could contain either or both of the Artemia host species, so that the presence of the hosts could be linked directly to the persistence of the parasites. First, we show that the microsporidian A. rigaudi is a spillover parasite: it was unable to persist in the absence of its maintenance host A. parthenogenetica. This result was particularly striking, as A. rigaudi displayed both high prevalence (in the field) and high infectivity (when tested in the laboratory) in both hosts. Moreover, the seasonal presence of A. parthenogenetica imposed seasonality on the rate of spillover, causing cyclical pseudo-endemics in the spillover host A. franciscana. Second, while our prevalence data was sufficient to identify E. artemiae as either a spillover or a facultative multi-host parasite, we could not distinguish between the two possibilities. This study supports the importance of studying the community context of multi-host parasites, and demonstrates that in appropriate multi-host systems, sampling across a range of conditions and host communities can lead to clear conclusions about the drivers of parasite persistence.


Assuntos
Artemia/parasitologia , Microsporídios/fisiologia , Animais , Reservatórios de Doenças/parasitologia , França , Genótipo , Interações Hospedeiro-Parasita , Modelos Lineares , Microsporídios/classificação , Microsporídios/genética , Prevalência , Salinidade , Estações do Ano , Fatores de Tempo
8.
Evol Lett ; 3(1): 80-92, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30788144

RESUMO

Theory and empirical data showed that two processes can boost selection against deleterious mutations, thus facilitating the purging of the mutation load: inbreeding, by exposing recessive deleterious alleles to selection in homozygous form, and sexual selection, by enhancing the relative reproductive success of males with small mutation loads. These processes tend to be mutually exclusive because sexual selection is reduced under mating systems that promote inbreeding, such as self-fertilization in hermaphrodites. We estimated the relative efficiency of inbreeding and sexual selection at purging the genetic load, using 50 generations of experimental evolution, in a hermaphroditic snail (Physa acuta). To this end, we generated lines that were exposed to various intensities of inbreeding, sexual selection (on the male function), and nonsexual selection (on the female function). We measured how these regimes affected the mutation load, quantified through the survival of outcrossed and selfed juveniles. We found that juvenile survival strongly decreased in outbred lines with reduced male selection, but not when female selection was relaxed, showing that male-specific sexual selection does purge deleterious mutations. However, in lines exposed to inbreeding, where sexual selection was also relaxed, survival did not decrease, and even increased for self-fertilized juveniles, showing that purging through inbreeding can compensate for the absence of sexual selection. Our results point to the further question of whether a mixed strategy combining the advantages of both mechanisms of genetic purging could be evolutionary stable.

9.
Mol Ecol Resour ; 19(3): 757-772, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30615304

RESUMO

Population genetics is a convenient tool to study the population biology of non-model and hard to sample species. This is particularly true for parasites and vectors. Heterozygote deficits and/or linkage disequilibrium often occur in such studies and detecting the origin of those (Wahlund effect, reproductive system or amplification problems) is uneasy. We used new tools (correlation between the number of times a locus is found in significant linkage disequilibrium and its genetic diversity, correlations between Wright's FIS and FST , FIS and number of missing data, FIT and allele size and standard errors comparisons) for the first time on a real data set of tsetse flies, a vector of dangerous diseases to humans and domestic animals in sub-Saharan Africa. With these new tools, and cleaning data from null allele, temporal heterogeneity and short allele dominance effects, we unveiled the coexistence of two highly divergent cryptic clades in the same sites. These results are in line with other studies suggesting that the biodiversity of many taxa still largely remain undescribed, in particular pathogenic agents and their vectors. Our results also advocate that including individuals from different cohorts tends to bias subdivision measures and that keeping loci with short allele dominance and/or too frequent missing data seriously jeopardize parameter's estimations. Finally, separated analyses of the two clades suggest very small tsetse densities and relatively large dispersal.


Assuntos
Variação Genética , Genética Populacional/métodos , Moscas Tsé-Tsé/classificação , Moscas Tsé-Tsé/genética , Alelos , Animais , Loci Gênicos , Tanzânia
10.
Evolution ; 72(10): 2181-2201, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30109706

RESUMO

Sex allocation theory predicts that simultaneous hermaphrodites evolve to an evolutionary stable resource allocation, whereby any increase in investment to male reproduction leads to a disproportionate cost on female reproduction and vice versa. However, empirical evidence for sexual trade-offs in hermaphroditic animals is still limited. Here, we tested how male and female reproductive traits evolved under conditions of reduced selection on either male or female reproduction for 40 generations in a hermaphroditic snail. This selection favors a reinvestment of resources from the sex function under relaxed selection toward the other function. We found no such evolutionary response. Instead, juvenile survival and male reproductive success significantly decreased in lines where selection on the male function (i.e., sexual selection) was relaxed, while relaxing selection on the female function had no effect. Our results suggest that most polymorphisms under selection in these lines were not sex-antagonistic. Rather, they were deleterious mutations affecting juvenile survival (thus reducing both male and female fitness) with strong pleiotropic effects on male success in a sexual selection context. These mutations accumulated when sexual selection was relaxed, which supports the idea that sexual selection in hermaphrodites contributes to purge the mutation load from the genome as in separate-sex organisms.


Assuntos
Evolução Biológica , Preferência de Acasalamento Animal , Seleção Genética , Caramujos/fisiologia , Animais , Organismos Hermafroditas/genética , Organismos Hermafroditas/fisiologia , Caramujos/genética
11.
G3 (Bethesda) ; 8(5): 1523-1533, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29535148

RESUMO

Daphnia reproduce by cyclic-parthenogenesis, where phases of asexual reproduction are intermitted by sexual production of diapause stages. This life cycle, together with environmental sex determination, allow the comparison of gene expression between genetically identical males and females. We investigated gene expression differences between males and females in four genotypes of Daphnia magna and compared the results with published data on sex-biased gene expression in two other Daphnia species, each representing one of the major phylogenetic clades within the genus. We found that 42% of all annotated genes showed sex-biased expression in D. magna This proportion is similar both to estimates from other Daphnia species as well as from species with genetic sex determination, suggesting that sex-biased expression is not reduced under environmental sex determination. Among 7453 single copy, one-to-one orthologs in the three Daphnia species, 707 consistently showed sex-biased expression and 675 were biased in the same direction in all three species. Hence these genes represent a core-set of genes with consistent sex-differential expression in the genus. A functional analysis identified that several of them are involved in known sex determination pathways. Moreover, 75% were overexpressed in females rather than males, a pattern that appears to be a general feature of sex-biased gene expression in Daphnia.


Assuntos
Daphnia/genética , Meio Ambiente , Caracteres Sexuais , Processos de Determinação Sexual/genética , Animais , Feminino , Regulação da Expressão Gênica , Ontologia Genética , Masculino , Especificidade da Espécie
12.
Am Nat ; 190(5): 694-706, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29053358

RESUMO

Biological invasions offer interesting situations for observing how novel interactions between closely related, formerly allopatric species may trigger phenotypic evolution in situ. Assuming that successful invaders are usually filtered to be competitively dominant, invasive and native species may follow different trajectories. Natives may evolve traits that minimize the negative impact of competition, while trait shifts in invasives should mostly reflect expansion dynamics, through selection for colonization ability and transiently enhanced mutation load at the colonization front. These ideas were tested through a large-scale common-garden experiment measuring life-history traits in two closely related snail species, one invasive and one native, co-occurring in a network of freshwater ponds in Guadeloupe. We looked for evidence of recent evolution by comparing uninvaded or recently invaded sites with long-invaded ones. The native species adopted a life history favoring rapid population growth (i.e., increased fecundity, earlier reproduction, and increased juvenile survival) that may increase its prospects of coexistence with the more competitive invader. We discuss why these effects are more likely to result from genetic change than from maternal effects. The invader exhibited slightly decreased overall performances in recently colonized sites, consistent with a moderate expansion load resulting from local founder effects. Our study highlights a rare example of rapid life-history evolution following invasion.


Assuntos
Evolução Biológica , Espécies Introduzidas , Traços de História de Vida , Caramujos/fisiologia , Animais , Guadalupe , Lagoas , Crescimento Demográfico , Caramujos/genética
13.
Curr Biol ; 27(2): 237-242, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28041795

RESUMO

Self-fertilization is widely believed to be an "evolutionary dead end" [1, 2], increasing the risk of extinction [3] and the accumulation of deleterious mutations in genomes [4]. Strikingly, while the failure to adapt has always been central to the dead-end hypothesis [1, 2], there are no quantitative genetic selection experiments comparing the response to positive selection in selfing versus outcrossing populations. Here we studied the response to selection on a morphological trait in laboratory populations of a hermaphroditic, self-fertile snail under either selfing or outcrossing. We applied both treatments to two types of populations: some having undergone frequent selfing and purged a substantial fraction of their mutation load in their recent history [5], and others continuously maintained under outcrossing. Populations with a history of outcrossing respond faster to selection than those that have experienced selfing. In addition, when self-fertilization occurs during selection, the response is initially fast but then rapidly slows, while outcrossing populations maintain their response throughout the experiment. This occurs irrespective of past selfing history, suggesting that high levels of inbreeding depression, contrary to expectation [6], do not set strong limits to the response to selection under inbreeding, at least at the timescale of a few generations. More surprisingly, phenotypic variance is consistently higher under selfing, although it quickly becomes less responsive to selection. This implies an increase in non-heritable variance, hence a breakdown of developmental canalization [7] under selfing. Our findings provide the first empirical support of the short-term positive and long-term negative effects of selfing on adaptive potential.


Assuntos
Evolução Biológica , Autofertilização , Caramujos/fisiologia , Animais , Genética Populacional , Depressão por Endogamia , Mutação , Seleção Genética , Caramujos/genética
14.
Genetics ; 201(3): 1143-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26341660

RESUMO

The breeding systems of many organisms are cryptic and difficult to investigate with observational data, yet they have profound effects on a species' ecology, evolution, and genome organization. Genomic approaches offer a novel, indirect way to investigate breeding systems, specifically by studying the transmission of genetic information from parents to offspring. Here we exemplify this method through an assessment of self-fertilization vs. automictic parthenogenesis in Daphnia magna. Self-fertilization reduces heterozygosity by 50% compared to the parents, but under automixis, whereby two haploid products from a single meiosis fuse, the expected heterozygosity reduction depends on whether the two meiotic products are separated during meiosis I or II (i.e., central vs. terminal fusion). Reviewing the existing literature and incorporating recombination interference, we derive an interchromosomal and an intrachromosomal prediction of how to distinguish various forms of automixis from self-fertilization using offspring heterozygosity data. We then test these predictions using RAD-sequencing data on presumed automictic diapause offspring of so-called nonmale producing strains and compare them with "self-fertilized" offspring produced by within-clone mating. The results unequivocally show that these offspring were produced by automixis, mostly, but not exclusively, through terminal fusion. However, the results also show that this conclusion was only possible owing to genome-wide heterozygosity data, with phenotypic data as well as data from microsatellite markers yielding inconclusive or even misleading results. Our study thus demonstrates how to use the power of genomic approaches for elucidating breeding systems, and it provides the first demonstration of automictic parthenogenesis in Daphnia.


Assuntos
Daphnia/fisiologia , Partenogênese/genética , Autofertilização/genética , Animais , Daphnia/genética , Feminino , Heterozigoto , Masculino , Mapeamento por Restrição , Análise de Sequência de DNA/métodos
15.
Int J Parasitol ; 43(10): 795-803, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23851079

RESUMO

We investigated the host specificity of two cryptic microsporidian species (Anostracospora rigaudi and Enterocytospora artemiae) infecting invasive (Artemia franciscana) and native (Artemia parthenogenetica) hosts in sympatry. Anostracospora rigaudi was on average four times more prevalent in the native host, whereas E. artemiae was three times more prevalent in the invasive host. Infection with An. rigaudi strongly reduced female reproduction in both host species, whereas infection with E. artemiae had weaker effects on female reproduction. We contrasted microsporidian prevalence in native A. franciscana populations (New World) and in both invaded and non-invaded Artemia populations (Old World). At a community level, microsporidian prevalence was twice as high in native compared with invasive hosts, due to the contrasting host-specificity of An. rigaudi and E. artemiae. At a higher biogeographical level, microsporidian prevalence in A. franciscana did not differ between the invaded populations and the native populations used for the introduction. Although E. artemiae was the only species found both in New and Old World populations, no evidence of its co-introduction with the invasive host was found in our experimental and phylogeographic tests. These results suggest that the success of A. franciscana invasion is probably due to a lower susceptibility to virulent microsporidian parasites rather than to decreased microsporidian prevalence compared with A. parthenogenetica or to lower microsporidian virulence in introduced areas.


Assuntos
Artemia/microbiologia , Microsporídios/isolamento & purificação , Animais , DNA Fúngico/química , DNA Fúngico/genética , Dados de Sequência Molecular , Prevalência , Análise de Sequência de DNA
16.
Parasitology ; 140(9): 1168-85, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23731593

RESUMO

Two new microsporidia, Anostracospora rigaudi n. g., n. sp., and Enterocytospora artemiae n. g., n. sp. infecting the intestinal epithelium of Artemia parthenogenetica Bowen and Sterling, 1978 and Artemia franciscana Kellogg, 1906 in southern France are described. Molecular analyses revealed the two species belong to a clade of microsporidian parasites that preferentially infect the intestinal epithelium of insect and crustacean hosts. These parasites are morphologically distinguishable from other gut microsporidia infecting Artemia. All life cycle stages have isolated nuclei. Fixed spores measure 1·3×0·7 µm with 5-6 polar tube coils for A. rigaudi and 1·2×0·9 µm with 4 polar tube coils for E. artemiae. Transmission of both species is horizontal, most likely through the ingestion of spores released with the faeces of infected hosts. The minute size of these species, together with their intestinal localization, makes their detection and identification difficult. We developed two species-specific molecular markers allowing each type of infection to be detected within 3-6 days post-inoculation. Using these markers, we show that the prevalence of these microsporidia ranges from 20% to 75% in natural populations. Hence, this study illustrates the usefulness of molecular approaches to study prevalent, but cryptic, infections involving microsporidian parasites of gut tissues.


Assuntos
Artemia/parasitologia , Estágios do Ciclo de Vida , Microsporídios/genética , Animais , Sequência de Bases , DNA Fúngico/genética , DNA Ribossômico/genética , Transmissão de Doença Infecciosa/veterinária , Trato Gastrointestinal/parasitologia , Microscopia Eletrônica de Transmissão/veterinária , Microsporídios/crescimento & desenvolvimento , Microsporídios/isolamento & purificação , Microsporídios/ultraestrutura , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/veterinária , Prevalência , Análise de Sequência de DNA/veterinária , Especificidade da Espécie , Esporos Fúngicos
17.
Ecol Lett ; 16(4): 493-501, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23351125

RESUMO

Grouping behaviours (e.g. schooling, shoaling and swarming) are commonly explicated through adaptive hypotheses such as protection against predation, access to mates or improved foraging. However, the hypothesis that aggregation can result from manipulation by parasites to increase their transmission has never been demonstrated. We investigated this hypothesis using natural populations of two crustacean hosts (Artemia franciscana and Artemia parthenogenetica) infected with one cestode and two microsporidian parasites. We found that swarming propensity increased in cestode-infected hosts and that red colour intensity was higher in swarming compared with non-swarming infected hosts. These effects likely result in increased cestode transmission to its final avian host. Furthermore, we found that microsporidian-infected hosts had both increased swarming propensity and surfacing behaviour. Finally, we demonstrated using experimental infections that these concurrent manipulations result in increased spore transmission to new hosts. Hence, this study suggests that parasites can play a prominent role in host grouping behaviours.


Assuntos
Artemia/parasitologia , Comportamento Animal , Interações Hospedeiro-Parasita , Animais , Artemia/genética , Artemia/microbiologia , Cestoides , Infecções por Cestoides/parasitologia , Infecções por Cestoides/transmissão , Microsporídios/patogenicidade , Fenótipo , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...